

LEXON
WRITER’S
TUTORIAL

 0.4.3.23-1

Lexon is under development. The facts and examples in this doc-
ument will be replaced by better iterations. The principles de-
scribed will hold. For updates, visit https://www.Lexon.org.

SEP. 2024 LEXON 0.3

TM

 ii

The information provided in this document is strictly for educa-
tional purposes. Although considerable effort has been made to
ensure that the information was correct at time of writing, there
are no representations or warranties, express or implied, about
the completeness, accuracy, reliability, suitability, or availability
with respect to the information, products, services, or related
graphics contained in this document for any purpose. Any use of
this information is at your own risk. The author does not assume
and hereby disclaims any liability to any party for any loss, dam-
age, or disruption caused by errors or omissions, whether such er-
rors or omissions result from accident, negligence, or any other
cause. The information described within this document are the
author’s personal thoughts. It is not intended to be a definitive
set of instructions for any project. There may be other technolo-
gies or materials not covered. It is recommended that you consult
a technologist for the needs of your particular project.

T E X T V E R S I O N 0 . 4 . 3 . 2 3 - 1 f o r L E X O N V E R S I O N 0 . 3

F I R S T E D I T I O N

Please send feedback to

tutorial@lexon.org

Copyright © 2020-24 Henning Diedrich
all rights reserved, except see page v

Lexon code and design © 2019-24 Henning Diedrich, AGPL 3

Lexon logos trademark 2018, 2023 Henning Diedrich
www.lexon.org

PLEASE SEND YOUR FEEDBACK,
THOUGHTS AND CRITICISM TO

TUTORIAL@LEXON.ORG

FOR UPDATES CHECK OUT THE
 LEXON SITE

WWW.LEXON.ORG

TRY THE
ONLINE TUTORIAL

LEXON.ORG/TUTORIAL

WRITE CONTRACTS USING THE
ONLINE COMPILER

LEXON.ORG/COMPILER

GET IN TOUCH JOINING THE
TELEGRAM CHANNEL

T.ME/LEXONIANS

WWW.LEXON.ORG

iv

ABOUT LEXON
Lexon is a computer language that anyone can read.

With Lexon, the same text is both a contract and a program.
Lexon was made for blockchain smart contracts and makes them
legally enforceable. It can be used on- and off-chain to express
agreements, internal process flow, high-level business logic, regu-
lations, and statute. Lawmakers can write 'Robotic Laws' in Lexon
to accurately and transparently direct and constrain machines.

Lexon is based on AI, but not on machine learning. It needs no
data pools, no training, minimal energy and hardware power, is
perfectly accurate, transparent, and provides full agency.

Lexon is a programming language, based on advanced paradigms,
implemented using mainstream compiler building technology.

Find updates about Lexon at https://www.Lexon.org.

 v

CREDITS
Thank you for your contributions to Lexon to:

Carla Reyes, Brian Fox, Thomas Hardjono, T. J. Saw,
Constance Choi, Daniel Nemet, Oliver Goodenough,
David Bovil, Anja Blaj, Marina Markezic, Dominic Williams,
Boris Adloff, Xenya Serova, Tom Montgomery,
Yanislav Malahov, Marcelo Alaniz, Nicolas Guzzo,
Benedikt Schuppli, Nikolas Guggenberger, Harald Stieber,
Florian Glatz, Stan Stalnaker, Ed Hesse and Dan Barnhizer.

COPYRIGHT
What you write in Lexon is yours. At least not ours.

You may reproduce any part of this document for courses you give
at a school or university. Otherwise see page ii.

The Lexon compiler is available online and for download at
https://lexon.org. The source examples in this document, unless
marked otherwise, are licensed under the GNU General Public
License, as found at https://www.gnu.org/licenses/gpl-3.0.html.

 vi

TABLE OF
CONTENTS

About Lexon ... iv
Credits ... v
Copyright .. v
Table of Contents ... vi
Introduction ... 1

LANGUAGE .. 3

EXAMPLES .. 35
MINIMAL: Escrow Example ... 36
SUBCONTRACTS: An Evaluation License 37
DIGITAL LAW: U.C.C. Financial Statement 42

CODE & TREES ... 49
Lexon Code: Walk-Through ... 50
Generated Solidity: Walk Through 53
Native Solidity: Walk Through .. 56

FIGURES ... 59

 1

INTRODUCTION
Programs that anyone can read. Legalese that just works.

A new profession is rising, not from the ashes, but from the
much-evolved body of the legal profession: the legal engineer.

Lexon will not replace lawyers, much less coders. But it will
lift the veil that shrouds their magic. Stark change is around the
corner: like retail and banking experienced, the internet keeps
shaking up our world in fundamental ways, often hard to imagine.
Entrenched players have learned the hard way that bits and bytes
can be sound, light, or information. Now, thanks to the block-
chain, bytes can be money.

Money more real than before, actually. Not just bank ac-
count 'money' that any banker will tell you is but a promise.
Money more like central bank money that today only banks own.
That's huge in itself. Lexon hypercharges it:

Contracts funnel money. Imagine they could be made to
perform automatically, unbreakably. That's a smart contract. Im-
agine further you could write such a contract in plain English.
And 'magically' it took care of itself, the receipts, the billing, the
handling of edge cases, just as written. And as far as the payment
side is concerned, it could not be broken. As scientists of econom-
ics will tell you, this changes the fundamental power equations of
contracting. It will change not just legal practice but the meaning
of negotiations, risk estimates, financial planning, and commerce.
That's around the corner.

Lexon helps navigating this change, joining the old with the
new, the cryptic with the obvious, the power of the word with the
power of the electron. And by this makes blockchain technology
accessible in a completely unexpected way that will touch many
walks of life.

This document is for everyone who is curious and has an
open mind. You will find use for Lexon that no-one thought of.

 3

LANGUAGE
The following is a step-by-step introduction to writing digital
contracts. It is an excerpt from the Lexon BIBLE.

It is assumed that you have a rough idea what Lexon is. This
tutorial is not needed to read and understand Lexon but to learn
to write it, to create Lexon digital contracts or statute.

If you haven’t, www.lexon.org/about.html gets you started.

You find the most up-to-date version of this tutorial online
at www.lexon.org/tutorial.

If you print this document, it’s best printed in landscape,
two pages per sheet, even page numbers left. Deleting a page in
the PDF can be the fastest way to accomplish that.

Some dedicated remarks have been added to the tutorial
steps to assist legal professionals and software developers to con-
firm their suspicions. It’s ok to ignore them if you are neither.

Text marked like this addresses legal professionals.

Text marked like this is for software developers.

LANGUAGE

Tutorial 0.4.3.23-1-1 4 LE X O N 0.3

1 : D I G I T A L C O N T R A C T S

LEX Managed Escrow.
LEXON: 0.2.22
PREAMBLE: 0.1.b - an escrow contract that is controlled
by a third party.

"Payer" is a person.
"Payee" is a person.
"Agent" is a person.
"Payment" is an amount.

The Payer pays the Payment into escrow,
appoints the Payee,
and appoints the Agent.

CLAUSE: Pay Out.
The Agent may pay the Payment from escrow to the
Payee.

CLAUSE: Pay Back.
The Agent may return the Payment from escrow to the
Payer.

Managed Escrow

A simple escrow contract.

Example for language version: 0.2.22 or higher

Lexon Example: 0.a.01 escrow/digital contracts

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 5 LE X O N 0.3

This example shows a simple escrow contract. It is a con-
tract between a Payer and a Payee, in which a third person,
the Agent, will decide where the money goes.

The code example shown is both a legally enforceable contract
and a blockchain smart contract. With Lexon, a contract and a
program can be the same thing. This is called a digital contract.

Digital contracts can be read by anyone, without any
knowledge about programming. This tutorial is about learning to
write them.

Digital contracts collapse the legal and the programming
world. The consequences of this are not always obvious.

On the one hand, this code is admissible in court as proof
for the meeting of the minds between two parties. On the other
hand, it can be made to automatically, unstoppably and un-tam-
perably execute on a blockchain. This takes only a few clicks and
is a matter of minutes.

For lawyers: Lexon digital contracts can be read by a judge,
or anyone else, without the help of experts. Importantly,
they are readable to the parties entering into the contract.
An important motivation for using Lexon to express block-
chain smart contracts is to deny the contracting partners a
plausible deniability-excuse when trying to sue themselves
out of a smart contract.

For programmers: The Lexon 0.3 compiler is built with the
standard compiler building tools Flex and Bison. The gram-
mar is expressed in LGF.

LANGUAGE

Tutorial 0.4.3.23-1-1 6 LE X O N 0.3

2 : T H E P O I N T O F L E X O N

LEX Will.

"Grantor" is a person.
"Heir" is a person.
"Executor" is a person.

The Grantor pays an Amount into escrow,
appoints the Heir,
and also appoints the Executor.

CLAUSE: Execute.
The Executor may
pay the escrow to the Heir.

Will

A minimal will.

Example for language version: 0.2.22 or higher

Lexon Example: 0.a.02 escrow/tutorial

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 7 LE X O N 0.3

This example shows a minimal will. As a lawyer, you might
find issue with it. That's the very point of Lexon: that you can,
within seconds.

The novelty with Lexon is that computer code can be read by an-
yone. A great example is the right reaction of lawyers to the text
in this example: it is probably insufficient in many ways.

But the point of Lexon is that lawyers can chime in imme-
diately to discuss how a text could be made right. Mind, this is a
program being discussed as to its correctness. By lawyers.

Likewise, businesspeople, potential customers or business
partners will benefit from being able to actually read the digital
contract they might be asked to enter into.

Lawyers: this smart contract, as a program that can manage
money, will work. The interesting question is, can it be
made safer and compliant by writing it the right way?

Lexon helps to put the challenges of smart contracts in sharp re-
lief. It helps to get the contracts right – legally as well as logically
– because it broadens the scope of who can take part in their ver-
ification.

LANGUAGE

Tutorial 0.4.3.23-1-1 8 LE X O N 0.3

 3 : T H E M A I N P A R T S

LEX Managed Escrow.
LEXON: 0.2.22
PREAMBLE: 0.1.b - an escrow contract that is controlled
by a third party.
-
"Payer" is a person.
"Payee" is a person.
"Agent" is a person.
"Payment" is an amount.
-
The Payer pays the Payment into escrow,
appoints the Payee,
and appoints the Agent.
-
CLAUSE: Pay Out.
The Agent may pay the Payment from escrow to the
Payee.

CLAUSE: Pay Back.
The Agent may return the Payment from escrow to the
Payer.

Managed Escrow

A typical, brief smart contract

Example for language version: 0.2.22 and higher

Lexon Example: 0.a.04 escrow/parts escrow

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 9 LE X O N 0.3

Lexon Digital Contracts have a document structure that resem-
bles traditional paper contracts.

The Lexon code shown here is the same escrow contract as
before on the previous page.

Lexon texts always starts with a

• Head that begins with the keyword LEX, a name,
and can have more meta information.

Three main parts follow:

• Definitions that describe the meaning of names as
used in the contract.

• A Recital that describes what happens when the
contract is first brought into existence.

• Clauses that list the events that the contract covers.

There can be more parts in more complex digital contracts.

Code of Lexon digital contracts can be inserted into the prose of
traditional contracts. But it can also stand alone. In this tutorial
we will mainly look at stand-alone examples.

Lawyers: In general, blockchain smart contracts support
two distinct situations: they can be a small, automated part
of a larger contract, or they can be the complete contract
for a simple agreement. There are quite complex smart con-
tract programs out there meanwhile and it turns out that a
surprisingly large share of traditional contract prose can be
'blockchainyfied,' i.e., automated. Lexon increases the scope
where blockchain smart contracts can help.

LANGUAGE

Tutorial 0.4.3.23-1-1 10 LE X O N 0.3

LEX Will.
-
"Grantor" is a person.
"Heir" is a person.
"Executor" is a person.
-
The Grantor pays an Amount into escrow,
appoints the Heir,
and also appoints the Executor.
-
CLAUSE: Execute.
The Executor may
pay the escrow to the Heir.

Will

A simple smart contract will

Example for language version: 0.2.22 or higher

Lexon Example: 0.a.05 escrow/parts will

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 11 LE X O N 0.3

This contract has the same parts as in the previous example:

• Head beginning on LEX, followed by a name.
• Definitions that define names.
• Recitals describing the first things to happen.
• Clause - in this case just one.

The Lexon code shown here is the same (flawed) estate con-
tract as shown before.

Programmers: Obviously, definitions are type declarations,
the recitals are the constructor code and clauses are functions.
There are similarities like this throughout the design of the
Lexon language. It is at heart, but a computer language
built based on the same premises and with the same tools
as other programming languages.

Let's take a closer look at the individual parts of a digital contract:

LANGUAGE

Tutorial 0.4.3.23-1-1 12 LE X O N 0.3

4 : H E A D

LEX Managed Escrow.
LEXON: 0.2.22
PREAMBLE: An escrow contract that is controlled by a
third party.

"Payer" is a person.
"Payee" is a person.
"Agent" is a person.
"Payment" is an amount.

The Payer pays the Payment into escrow,
appoints the Payee,
and appoints the Agent.

CLAUSE: Pay Out.
The Agent may pay the Payment from escrow to the
Payee.

CLAUSE: Pay Back.
The Agent may return the Payment from escrow to the
Payer.

Managed Escrow

A simple escrow contract

Example for language version: 0.2.22 or hihger

Lexon Example: 0.a.06 escrow/head

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 13 LE X O N 0.3

Lexon texts always starts with the head. It consists of:

1. The LEX keyword, followed by the name of the digital contract.
The LEX keyword tells both the computer and a judge that this
is the start of the automated parts of a contract.

The name can be any sensible name that helps remembering
the contents, managing or filing this code.

The head may consist of only the LEX keyword and the
name that follows it.

2. The LEXON tag is optional. If it is present, it is followed by a
version number that indicates with which version of Lexon the
code will work. This is a concession to the fact that Lexon is soft-
ware and evolving. This version number establishes the link be-
tween the code and the revision of the Lexon language it was
made for. The current Lexon version is 0.3 but the examples work
for 0.2, too.

3. The PREAMBLE is also optional. This keyword is followed by
a description of the contract text that follows. The preamble text
is neither legally binding (as preambles in normal contracts never
are!) nor part of the automation. It should be followed by an
empty line for clarity.

Lawyers: To have a keyword like LEX is useful for the legal
perspective of a digital contract. It provides clear separa-
tion between the automated parts of a digital contract and
legal prose (if any) that might precede it. Because of this
keyword requirement, Lexon digital contracts are not com-
pletely seamlessly embedded in a larger document prose.
But a judge would, at any rate, never be completely igno-
rant of the fact that there is automation in play with a dig-
ital contract. Therefore, it will only help to have a clear in-
dication of where the automation text starts: with LEX.

The definitions follow the head:

LANGUAGE

Tutorial 0.4.3.23-1-1 14 LE X O N 0.3

5 : D E F I N I T I O N S

LEX Managed Escrow.
LEXON: 0.2.22
PREAMBLE: 0.1.b - an escrow contract that is controlled
by a third party.

"Payer" is a person.
"Payee" is a person.
"Agent" is a person.
"Payment" is an amount.

The Payer pays the Payment into escrow,
appoints the Payee,
and appoints the Agent.

CLAUSE: Pay Out.
The Agent may pay the Payment from escrow to the
Payee.

CLAUSE: Pay Back.
The Agent may return the Payment from escrow to the
Payer.

Managed Escrow

A simple escrow contract

Example for language version: 0.2.22 or higher

Lexon Example: 0.a.07 escrow/definitions

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 15 LE X O N 0.3

The first thing after the head are the definitions.

Definitions start with a name followed by ‘is a person', 'is an
amount' or whatever else can be said about what the respective
name stands for.

Because the contract examples we are looking at here are really
templates, we do not yet fix a concrete amount in the definitions,
nor a concrete street address or blockchain wallet address. Ra-
ther, keywords like person, amount, or data are used to give a first
indication of what a name will mean. We’re just clarifying the cat-
egory a name falls into. The concrete information will be put into
place once the contract is digitally signed and moved towards the
blockchain. In blockchain parlance, deployed.

Names can be defined as:

• person
• amount
• data

Lawyers: Definitions are something lawyers are familiar
with. With Lexon, definitions are less concrete than usual
because Lexon code at this stage is a template for multiple
contracts, rather than one concrete contract.

Programmers: The definitions evidently use data types:

• person is a blockchain address.

• amount is an integer.

• data is a hash.

Lexon has composite types. They are limited in scope, so that
they can be understood intuitively by non-programmers.
But they make for powerful constructs. More on that later.

LANGUAGE

Tutorial 0.4.3.23-1-1 16 LE X O N 0.3

6 : R E C I T A L

LEX Managed Escrow.
LEXON: 0.2.22
PREAMBLE: An escrow contract that is controlled by a
third party.

"Payer" is a person.
"Payee" is a person.
"Agent" is a person.
"Payment" is an amount.

The Payer pays the Payment into escrow,
appoints the Payee,
and appoints the Agent.

CLAUSE: Pay Out.
The Agent may pay the Payment from escrow to the
Payee.

CLAUSE: Pay Back.
The Agent may return the Payment from escrow to the
Payer.

Managed Escrow

A simple escrow contract

Example for language version: 0.2.22 or higher

Lexon Example: 0.a.08 escrow/recitals

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 17 LE X O N 0.3

The recital sets up the context for the performance of the con-
tract. It works like in a paper contract: it is text that is performed
once before any clauses are executed. It cannot be skipped and
clauses cannot be triggered before it.

As opposed to the PREAMBLE, the recital is a binding part of
the contract, its first part, not a paraphrasing comment.

There is no keyword that marks the beginning of the recital. I.e.,
the recital does not start on the word ‘RECITAL.’ It is simply the
text that follows right after the definitions.

The recital is articulated in present tense. In Lexon 0.3, it cannot
contain the word may. Everything stated in the recital must hap-
pen.

Lawyers: Just as in a traditionally paper contract, where
parties commonly use recitals to list the actions taken that
led them to enter into the agreement, a Lexon recital pro-
vides the prerequisite foundation for the clauses that fol-
low.

Programmers: Recitals are constructor code.

The main part of a digital contract follows: the clauses.

LANGUAGE

Tutorial 0.4.3.23-1-1 18 LE X O N 0.3

7 : C L A U S E S

LEX Managed Escrow.
LEXON: 0.2.22
PREAMBLE: An escrow contract that is controlled by a
third party.

"Payer" is a person.
"Payee" is a person.
"Agent" is a person.
"Payment" is an amount.

The Payer pays the Payment into escrow,
appoints the Payee,
and appoints the Agent.

CLAUSE: Pay Out.
The Agent may pay the Payment from escrow to the
Payee.

CLAUSE: Pay Back.
The Agent may return the Payment from escrow to the
Payer.

Managed Escrow

A simple escrow contract

Example for language version: 0.2.22 or higher

Lexon Example: 0.a.09 escrow/clauses

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 19 LE X O N 0.3

The clauses describe events that can occur during the lifetime of
the digital contract. Such clauses, as in the example on the oppo-
site page, consist of sentences called statements.

(Clauses can also be used to provide the explanation of a term,
which is an alternate way of defining the meaning of a word.)

Note that every clause in a digital contract is optional. Digital
contracts cannot oblige anyone to do anything.

This is because blockchain smart contracts cannot 'reach out' of
the blockchain. They can only incentivize parties to the contract
by requiring stakes and rewarding actions.

Recitals and clauses must have a person as an acting subject. They
must describe someone doing something. They cannot be phrased
as abstractly as sentences in a paper contract often are. For a
blockchain smart contract, for anything to happen at all, someone
has to 'trigger' it. Therefore, digital contracts do not, e.g., express
requirements in the passive tense.

Lawyers: The fact that blockchain smart contracts require
an actor 'for anything to happen' and cannot oblige parties
to the contract to anything, forces a shift in the way that
lawyers usually write contracts. Playing to the strengths of
blockchain smart contracts requires a focus on providing
incentives for performance rather than emphasizing legal
remedies in the event of a breach. This does not make dig-
ital contracts not-contracts: but they are based on a subset
of mechanisms that can be employed in contracts. See the
Holy Grail paper at https://lexon.org/papers on how obli-
gations will be realized, and Efficient Breach in the Lexon
book and BIBLE.

Programmers: Clauses are basically functions or procedures.

LANGUAGE

Tutorial 0.4.3.23-1-1 20 LE X O N 0.3

8 : S E N T E N C E S

LEX Managed Escrow.
LEXON: 0.2.22
PREAMBLE: An escrow contract that is controlled by a
third party.

"Payer" is a person.
"Payee" is a person.
"Agent" is a person.
"Payment" is an amount.

The Payer pays the Payment into escrow,
appoints the Payee,
and appoints the Agent.

CLAUSE: Pay Out.
The Agent may pay the Payment from escrow to the
Payee.

CLAUSE: Pay Back.
The Agent may return the Payment from escrow to the
Payer.

Managed Escrow

A simple escrow contract

Example for language version: 0.2.22 or higher

Lexon Example: 0.a.10 escrow/sentences

Sentences in a digital contract have a structure like in natural
language: they consist of a subject and a predicate.

The predicate, in turn, consists of verb and object. This results in
the standard English sentence structure of subject-verb-object.

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 21 LE X O N 0.3

9 : P R E D I C A T E S

LEX Managed Escrow.
LEXON: 0.2.22
PREAMBLE: An escrow contract that is controlled by a
third party.

"Payer" is a person.
"Payee" is a person.
"Agent" is a person.
"Payment" is an amount.

The Payer pays the Payment into escrow,
appoints the Payee,
and appoints the Agent.

CLAUSE: Pay Out.
The Agent may pay the Payment from escrow to the
Payee.

CLAUSE: Pay Back.
The Agent may return the Payment from escrow to the
Payer.

Managed Escrow

A simple escrow contract

Example for language version: 0.2.22 or higher

Lexon Example: 0.a.11 escrow/predicates

Predicates consist of one or multiple verbs and objects, like in nat-
ural language.

Programmers: Note that Lexon allows for the concatena-
tion of verbs that belong to the same subject.

LANGUAGE

Tutorial 0.4.3.23-1-1 22 LE X O N 0.3

1 0 : T H E W O R D ' M A Y '

LEX Managed Escrow.
LEXON: 0.2.22
PREAMBLE: An escrow contract that is controlled by a
third party.

"Payer" is a person.
"Payee" is a person.
"Agent" is a person.
"Payment" is an amount.

The Payer pays the Payment into escrow,
appoints the Payee,
and appoints the Agent.

CLAUSE: Pay Out.
The Agent may pay the Payment from escrow to the
Payee.

CLAUSE: Pay Back.
The Agent may return the Payment from escrow to the
Payer.

Managed Escrow

A simple escrow contract

Example for language version: 0.2.22 or higher

Lexon Example: 0.a.12 escrow/permission

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 23 LE X O N 0.3

May has a pronounced role in digital contracts:

The keyword may controls who can do what with a digital con-
tract. It works like a gatekeeper on the clauses.

Note that the logic applied in digital contracts is otherwise strictly
Boolean (i.e., binary: yes/no) and not Deontic (obligations and per-
missions: must/must not). May is the exception to this rule and
used to specify permissions regarding the performance of individ-
ual clauses of a digital contract.

Lawyers: The term may, in digital contracts, gives a party
to the contract agency. Only those allowed by a may clause
to perform an action, can. In the example above, only the
Agent can perform the Pay Out or Pay Back. As seen from
the blockchain, if the wrong party tries to perform these
clauses, the smart contract will simply cancel the attempt.

Programmers: The keyword may acts like a guard, a permis-
sion operator to functions. It works like an assertion.

Let's examine a small example.

LANGUAGE

Tutorial 0.4.3.23-1-1 24 LE X O N 0.3

1 1 : A S I M P L E E X A M P L E

LEX Payment.

"Payer" is a person.
"Payee" is a person.
"Payment" is an amount.

The Payer pays a Payment to the Payee.

Payment

Simple transfer of funds

Example for language version: 0.2.22 or higher

Lexon Example: 0.b.1 payment

This is a payment, nothing more. The payer literally just
transfers an amount of tokens to the payee.

This simple 'contract' has only three parts: the head, consisting
only of the line starting on LEX, after that the definitions are
given, and last, a recital. It does not have clauses, like a normal
digital contract will always have.

Therefore, this is maybe not 'really' a smart contract, be-
cause it is so simple. But let's use the simplicity to highlight a cou-
ple of things.

LEX is followed by the name you want to give the script, in
this example, the word ‘Payment’. This name is used to organize
code and contracts but does not have any special meaning in the
contract text that follows.

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 25 LE X O N 0.3

The next line is a definition, it defines what a ‘Payer’ is sup-
posed to be. It does not get concrete yet but rather just defines a
category. In this case, a person. This points to the fact that Lexon
contracts are really templates, because a concrete contract would
have a concrete name in this place. When a Lexon contract is de-
ployed to the blockchain, what it gets instead is a unique numeric
ID that serves the role of a passport number in the blockchain
world: it unambiguously defines which person the Payer is.

After the Payer, we also define what the Payee and the Payment
are: a person and an amount respectively. When the contract is
deployed to the blockchain, those two parameters will also be
made concrete.

Finally, there is the heart of the contract, the ‘code’: in this case it
is not conditional - as contracts usually are - but simply money
made changing hands. After that happens, the contract termi-
nates. That there is no conditionality is because we just have a
recital, and the performance of the recital is mandatory, not op-
tional like clauses are. For this example, that was the intention.

LANGUAGE

Tutorial 0.4.3.23-1-1 26 LE X O N 0.3

1 2 : L E X O N T E X T S A R E T E M P L A T E S

Aoll Lexon 0.3 texts are really templates. This will change in later
version.

But for now, only once a contract is signed and deployed to a
blockchain, will persons named be identified by concrete block-
chain addresses. It is in that sense that the Simple Example shown
above really is a template and the names defined in it are place-
holders.

Lawyers: A contract's meaning, of course, does not depend
on the names of definitions that you use. Neither does the
automated performance 'care', i.e., the computer when per-
forming it.

Note that we are deliberately blurry with the use of the
words contract and smart contract at this point. We will be
very precise later.

You might know that there was a passionate discussion in
the blockchain and the overlapping legal space, whether
smart contracts are contracts or smart at all.

The question was always misleading. As we have seen, a
more complex Lexon smart contract will often define mul-
tiple legal contracts.

We will now look at two things that 'do not matter' for the mean-
ing of Lexon code: automatic coloring of the online editor and your
choice of names.

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 27 LE X O N 0.3

1 3 : C O L O R C O D E

In the vocabulary examples at www.lexon.org/vocabulary, one can
switch on color coding, and there will be a color code for the
Lexon 0.3 online compiler.

These color schemes exist to help the reader. They also support
writing. They do not affect automation or legal weight.

Green – or bold in black and white display and in this document’s
word reference – marks names that an author of a smart contract
invented in definitions or clauses.

Blue (bold or not) marks the Lexon keywords that the Lexon com-
piler immediately understands (those in the language reference).

Violet marks numbers.

Lawyers: The colors are only a matter of support while
reading or writing code. They do not affect the legal mean-
ing nor the machine’s interpretation of the code. The colors
are not 'part' of the document. They are added on the fly by
the online editor when displaying code.

Programmers:

Green marks variable and function names

Blue marks Lexon keywords.

Violet marks literals.

LANGUAGE

Tutorial 0.4.3.23-1-1 28 LE X O N 0.3

1 4 : E X C H A N G I N G N A M E S

LEX Transfer.

"Sender" is a person.
"Receiver" is a person.
"Sum" is an amount.

The Sender pays a Sum to the Receiver.

Payment

Simple transfer of funds

Example for language version: 0.2.22 or higher

Lexon Example: 0.b.3 payment/renamed

This code has the same functionality and meaning as the
one shown before. It just uses different names.

The point is, if you change the definition names, or the clause
names, or the name of the contract, it does not change the logic
of the contract. Its meaning is not dependent on how you call the
parties.

Programmers: this is the same as with any program. Varia-
ble names eventually don’t matter.

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 29 LE X O N 0.3

1 5 : S Y N O N Y M O U S V E R B S

LEX Transfer.

"Sender" is a person.
"Receiver" is a person.
"Sum" is an amount.

The Sender transfers a Sum to the Receiver.

Payment

Simple transfer of funds

Example for language version: 0.2.22 or higher

Lexon Example: 0.b.4 payment/synonyms

This code has the same functionality and meaning as the
one shown before, it just uses transfer instead of pay.

If you use a synonymous verb, it also does not change the logic of
the contract.

We will later see how 'names' can actually amount to entire
phrases, which contributes massively to the readability of Lexon
code.

Lawyers: a legal contract's meaning can change materially
if just a single operative word is changed. A paper is forth-
coming that explains why Lexon’s vocabulary specifically
cannot be misconstrued and can sustain synonyms. Though
strictly speaking unnecessary, the Lexon synonyms - and
the fact that they are synonyms - will also be explained in
an auto-generated glossary of terms that Lexon will be able
to create that describes the entire vocabulary used in Lexon.

LANGUAGE

Tutorial 0.4.3.23-1-1 30 LE X O N 0.3

1 6 : N E U T R A L N A M E S

LEX Transfer.

"A" is a person.
"B" is a person.
"C" is an amount.

A transfers C to B.

Payment

Simple transfer of funds

Example for language version: 0.2.22 or higher

Lexon Example: 0.b.5 payment/one letter names

This code has the same functionality and meaning as the
one shown before.

As you see, the names really don't matter. You cannot do this with
a verb though. Instead of 'transfers' you could write 'pays' or 're-
turns' if that makes the contract better readable for human read-
ers.

This is in keeping with how definitions can be used in legal
texts.

There is another change versus the previous example: in the re-
cital 'A transfers C to B.' all articles have been left out:

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 31 LE X O N 0.3

1 7 : A R T I C L E S

Articles (a, an, the) can be freely used or left out.

LEX Payment.

"Payer" is person.
"Payee" is person.
"Payment" is amount.

Payer pays Payment to Payee.

Payment

Simple transfer of funds

Example for language version: 0.2.22

Lexon Example: 0.b.6 payment/articles

The meaning of the text is identical to the one before.

Articles and some other words in Lexon are called 'fillers'. They
have a big role in making a text easy to read for a human but are
irrelevant to the automation of the contract on the blockchain.

Lawyers: Obviously, articles can fundamentally change the
meaning of a contract. The writer of a Lexon contract must
take care to not abuse them. Reining in the possibilities for
abuse of fill words is a high priority for future Lexon tools.
But language is not the right level to prevent fraud as it
must provide uninhibited expression. Lexon is not the
promise - at all - that smart contracts could not be mislead-
ing. Lexon is the promise that smart contracts can be read-
able.

LANGUAGE

Tutorial 0.4.3.23-1-1 32 LE X O N 0.3

1 8 : M I S L E A D I N G N A M E S

Language can be used to deceive.

LEX Payment.

"Payee" is person.
"Payer" is person.
"Payment" is amount.

Payee pays Payment to Payer.

Payment

Simple transfer of funds

Example for language version: 0.2.22 or higher

Lexon Example: 0.b.7 payment/misleading names

The meaning of this code is identical to the one shown be-
fore. It is just the labels that are misleading.

There is nothing in the language itself that keeps you from using
misleading definitions. It will confuse readers but the automation
of the contract will still work. At this point, the interpretation of
a human and the machine may fork for a moment but on close
inspection a human should find it just non-sensical. This would
be the case with any such attempts to deceive. It’s not possible to
write the perfect deception.

Lawyers: A judge may throw this contract out because it is
going to be hard to argue that switching the words Payer
and Payee served a purpose that both sides agreed upon.

LEXON LANGUAGE

Tutorial 0.4.3.23-1-1 33 LE X O N 0.3

1 9 : M E T A I N F O R M A T I O N

LEX Timestamp.
LEXON: 0.2.16
COMMENT: 1.a.1 - a timestamp of a data hash

The "Data" is a data.
The "Time" is a time.

Data be certified,
with Time fixed as the current time.

Payment

Simple Timestamping

Example for language version: 0.2.22

Lexon Example: 1.a.1 timestamp/data 1

Two keywords, LEXON and COMMENT can help working with
Lexon code. The information associated with them is not part of
the code proper but helps filing, processing and understanding it.

This contract attaches a timestamp to arbitrary infor-
mation that will serve to prove that a certain information
existed at a certain point in time.

The keyword LEXON is followed by a colon and then the com-
piler and language version number for which the code below it is
intended for. In programming, this is a crucial information to
avoid errors due to a change in rules. After the COMMENT key-
word, any text may be noted that names or gives context to the
understanding of the code below it. Both LEXON and COM-
MENT are optional.

LANGUAGE

Tutorial 0.4.3.23-1-1 34 LE X O N 0.3

L

Congrats for working through this, you should have a very good
idea now about how Lexon text is structured.

Get interactive at lexon.org/compiler, which has more ex-
amples that you can tinker with and check out what works.

A manual and tutorial is online at lexon.org/manual.

Possibly the best way to get a feel for Lexon is to play around with
the online vocabulary at lexon.org/vocabulary.

That page is connected with some excellent examples,
which are also explained in this document but online have every
single word wired to the vocabulary, for a very fast way to get an
impression of how Lexon grammar looks in practice.

We will now turn to three interesting, larger examples.

 35

EXAMPLES
The following examples show what Lexon can do and how digital
contracts look in practice.

If you are reading the electronic version of this document,
every keyword in the examples is linked to the online vocabulary.
You should give that webpage a try and randomly browse it, click-
ing from word to word and example to the example.

The first example is the familiar escrow example that is used
throughout the Lexon material, listed here for completeness.

The second example (pg. 37) is a license agreement that was
written for a paper that compares Lexon with other languages.

Finally, we look at what US law would look like written in
Lexon (pg. 42). This is an actual proposal to the reform committee
of the Universal Commercial Code (UCC).

There are more examples — a trade contract, a DAO LLC,
estate law, a variant of the Moloch DAO, and for future Lexon
code (version 0.4 and beyond) in the Lexon book and BIBLE.

Note how the examples in this section are digital contracts
that attain full identity of program and legal prose. They are dig-
itally expressed rather than merely digitally enhanced.

The examples are compatible with Lexon 0.2 and 0.3.

EXAMPLES

Tutorial 0.4.3.23-1-1 36 LE X O N 0.3

MINIMAL: ESCROW EXAMPLE
This is the example that frequently features in the Lexon material,
from the 2019 books to the 2024 whitepapers.1

Note that all bold keywords are clickable if you are looking
at an electronic version of this document. You find this and the
other examples online at https://lexon.org/examples.

LEX Escrow.

"Payer" is a person.
"Payee" is a person.
"Arbiter" is a person.
"Fee" is an amount.

The Payer pays an Amount into escrow, appoints the Payee,
appoints the Arbiter, and fixes the Fee.

CLAUSE: Pay Out.
The Arbiter may pay from escrow the Fee to themselves, and
afterwards pay the remainder of the escrow to the Payee.

CLAUSE: Pay Back.
The Arbiter may pay from escrow the Fee to themselves, and
afterwards return the remainder of the escrow to the Payer.

Fig 1 – Escrow Example (clickable)

This example shows a simple escrow contract. It is a contract be-
tween a Payer and a Payee, in which a third person, the Agent,
will decide where the money goes.

Like all digital contracts, this code is both 1) admissible in
court and 2) can be performed on a blockchain as smart contract.

1 See https://www.lexon.org/books and https://www.lexon.org/papers.

LEXON EXAMPLES

Tutorial 0.4.3.23-1-1 37 LE X O N 0.3

SUBCONTRACTS:
AN EVALUATION LICENSE
This digital contract was created by Florian Idelberger, PhD can-
didate at the European University Institute in Florence. It appears
in MERGING TRADITIONAL CONTRACTS (OR LAW) AND (SMART) E-CON-

TRACTS – A NOVEL APPROACH,2 comparing this text to smart con-
tracts written in other languages.

LEX: Evaluation License System.

LEXON: 0.2.1
AUTHORS: FLORIAN IDELBERGER, HENNING
DIEDRICH

PREAMBLE: This is a licensing contract for a software
evaluation.

TERMS:

"Licensor" is a person.
"Arbiter" is a person.
"Licensing Fee" is an amount.
"Breach Fee" is an amount.

The Licensor appoints the Arbiter,
fixes the Licensing Fee,
and fixes the Breach Fee.

TERMS PER License:

2 © 2020 Florian Idelberger – https://lawgorithm.com.br/wp-content/uploads/
2020/09/MLR2020-Florian-Idelberger.pdf

EXAMPLES

Tutorial 0.4.3.23-1-1 38 LE X O N 0.3

"Description of Goods" is a text.
"Licensee" is a person.
"Paid" is a binary.
"Commissioned" is a binary.
"Comment Text" is a text.
"Published" is a binary.
"Permission to Comment" is a binary.
"Notice Time" is a time.
"License" is this contract.

The Licensor appoints the Licensee, and fixes the
Description of Goods.

CLAUSE: Pay.
The Licensee pays the Licensing Fee to the Licensor,
and pays the Breach Fee into escrow.
This License is therefore Paid.

CLAUSE: Commission.
The Licensor may certify this License as Commissioned.

CLAUSE: Comment.
The Licensee may register a Comment Text.

CLAUSE: Publication.
The Licensee may certify this License as Published.

CLAUSE: Grant Permission to Comment.
The Licensee may grant the Permission to Comment.

CLAUSE: Declare Breach.
The Arbiter may, if this License is Factually Breached:
pay the Breach Fee to the Licensor,
and afterwards terminate this License.

CLAUSE: Factually Breached.

LEXON EXAMPLES

Tutorial 0.4.3.23-1-1 39 LE X O N 0.3

"Factually Breached" is defined as:
this License is Commissioned and the Comment Text is not
fixed,
or this License is Published and there is no Permission to
Comment and the Notice Time lies at least 24 hours in the
past.

CLAUSE: Notice.
The Licensor or the Arbiter may fix the Notice Time as the
respective current time.

CLAUSE: Noticed.
"Noticed" is defined as a Notice Time being fixed.

Fig 2 – License Agreement (Idelberger)

Idelberger describes the license (pg. 3, ibid.):

“The test case is a license contract to license a copy of a software
or other specified work for use and evaluation, in exchange for a licensing
fee. Furthermore, sublicensees can be specified. These grants and license
are defined in article 1. The sublicense part was inspired by Surden’s
description of a licensing system where universities can automatically
manage the licenses of their libraries and conclude more tailored licens-
ing agreements. In article 2, it is defined that optionally, the licensee or
sublicensee is commissioned to publish comments about the use of the
product. This approves publication, but also requires it. In article 3, pub-
lishing of comments about the use and evaluation of the asset without
approval by the licensor beforehand is prohibited. In case of unauthor-
ized publication, the licensee has 24 hours to remove the published ma-
terial. This improves the test case, as it requires use of external agents or
data sources depending on the system, as otherwise there is no basis on
which to automate or act. Additionally, the passing of time is tested.”

EXAMPLES

Tutorial 0.4.3.23-1-1 40 LE X O N 0.3

The original description of this logic is given as (ibid.):

This license is an example evaluation license.

 LICENSEE - The University
 SUBLICENSEE - A student as set force in the ap-
 pendix. (array of persons)
 ARBITER - An arbiter or oracle that decides in
 case of disputes. Can be a natural or legal per-
 son or a machine. Art. 2, 3 and 4 especially are
 evaluated by the arbiter in case of disputes.
 ASSET X - An asset to be licensed.

Article 1. The Licensor grants the Licensee a license to
 use and evaluate asset X and grant sublicenses
 among group Y, for use and evaluation. This
 grant is in exchange for a licensing fee.

Article 2. (optional) The (Sub)Licensee is commissioned to
 publish comments about the use of the product.
 This allows publication of comments but also re-
 quires them.

Article 3. The (Sub)Licensee must not publish comments of
 the use and evaluation of the Product without the
 approval of the Licensor; the approval must be
 obtained before the publication. If the Licensee
 publishes results of the evaluation of the Product
 without approval from the Licensor, the Licensee
 has 24 h to remove the material.

Article 4. This license terminates automatically
 if the (Sub)Licensee breaches this Agreement.
 Breach obliges the licensee to pay a fee to Licen-
 sor for Breach of the Licensing Terms.

Fig 3 – algorithm of the license agreement

LEXON EXAMPLES

Tutorial 0.4.3.23-1-1 41 LE X O N 0.3

S U B C O N T R A C T S (C O V E N A N T S)

The license illustrates the concept of covenants, or subcontracts.
This is a case of the Contract Factory: the digital contract is a de-
scription of multiple, separate 1:1 agreements.

Everything after TERMS (before TERMS PER) exists and
happens only once. There is only one Licensor, the Licensor ap-
points the Arbiter only once, etc.:

TERMS:

"Licensor" is a person.
"Arbiter" is a person.
"Licensing Fee" is an amount.
"Breach Fee" is an amount.

The Licensor appoints the Arbiter,
fixes the Licensing Fee,
and fixes the Breach Fee.

Everything after TERMS PER License describes potentially mul-
tiple agreements with different individuals. There can be multiple
Licenses, and each have their own Description of Goods, etc.:

TERMS PER License:

"Description of Goods" is a text.
"Licensee" is a person.
"Paid" is a binary.
...
The Licensor appoints the Licensee, and fixes the
Description of Goods.

This is what the tag TERMS PER effects. Also, all clauses listed
below it are part of (potentially multiple) individual agreement.

EXAMPLES

Tutorial 0.4.3.23-1-1 42 LE X O N 0.3

DIGITAL LAW:
U.C.C. FINANCIAL STATEMENT
This Lexon text is model trade statute developed by asst. prof.
Carla L. Reyes. For an in-depth, abstract and concrete legal dis-
cussion SEE REYES, CARLA, CREATING CRYPTOLAW FOR THE UNIFORM

COMMERCIAL CODE (2021).3 For additional technical details, includ-
ing a terminal run-through, see https://www.lexon.org/reyes.

L E X O N D I G I T A L L A W

This Lexon text example is part of a proposal to reform the notice
filing system included in Article 9 of the U.S. Uniform Commercial
Code (UCC).4, 5 Specifically, the example is of a smart contract-
based UCC-1 form – a financing statement that secured lenders
use to notify other prospective lenders that a loan has been made
that takes specific assets as collateral. The main function of the
UCC-1 financing statement is not in its cryptocurrency aspect.
Rather, the key aspect is foremost about record keeping.

This digital law allows to keep track of the status of the UCC
Financing Statement and related collateral in a way that is more
powerful than the current implementation in US law. It would
better serve the notice function of the Article 9 filing system.

This example proposes the implementation and perfor-
mance of digital law with the understanding that the states' filing
offices could implement and enforce law directly on the blockchain.

3 © 2021 Carla L. Reyes. Washington and Lee Law Review 1521 (2021), SMU Dedman
School of Law Legal Studies Research Paper No. 502. – https://ssrn.com/abstract=3809901

4 For further discussion of the underlying concepts, see Carla L. Reyes, Conceptualizing
Cryptolaw, 96 NEB. L. REV. 384 (2017).

5 UCC § 9-502. CONTENTS OF FINANCING STATEMENT –
https://www.law.cornell.edu/ucc/9/9-502

LEXON EXAMPLES

Tutorial 0.4.3.23-1-1 43 LE X O N 0.3

This code has definitions, a lot of clauses but no recitals. It
is structurally simpler than the short escrow contract listed above.

LEX UCC Financing Statement.

LEXON: 0.2.12

"Financing Statement" is this contract.
"File Number" is data.
"Initial Statement Date" is a time.
"Filer" is a person.
"Debtor" is a person.
"Secured Party" is a person.
"Filing Office" is a person.
"Collateral" is data.
"Digital Asset Collateral" is an amount.
"Reminder Fee" is an amount.
"Continuation Window Start" is a time.
"Continuation Statement Date" is a time.
"Continuation Statement Filing Number" is data.
"Lapse Date" is a time.
"Default" is a binary.
"Continuation Statement" is a binary.
"Termination Statement" is a binary.
"Termination Statement Time" is a time.
"Notification Statement" is a text.

The Filer fixes the Filing Office, fixes the Debtor, fixes the
Secured Party, and fixes the Collateral.

Clause: Certify.
The Filing Office may certify the File Number.

Clause: Set File Date.

EXAMPLES

Tutorial 0.4.3.23-1-1 44 LE X O N 0.3

The Filing Office may fix the Initial Statement Date as the
current time.

Clause: Set Lapse.
The Filing Office may fix the Lapse Date.

Clause: Set Continuation Start.
The Filing Office may fix the Continuation Window Start.

Clause: Pay Fee.
The Secured Party may pay a Reminder Fee into escrow.

Clause: Notice.
The Filing Office may fix the Notification Statement.

Clause: Notify.
The Filing Office may, if the Continuation Window Start
has passed, send the Notification Statement to the Secured
Party.

Clause: Pay Escrow In.
The Debtor may pay the Digital Asset Collateral into escrow.

Clause: Fail to Pay.
The Secured Party may declare Default.

Clause: Take Possession.
The Filing Office may, if Default is declared, pay the Digital
Asset Collateral to the Secured Party.

Clause: File Continuation.
The Secured Party may file the Continuation Statement.

Clause: Set Continuation Lapse.
The Filing Office may, if the Continuation Statement is
filed, fix the Continuation Statement Date.

LEXON EXAMPLES

Tutorial 0.4.3.23-1-1 45 LE X O N 0.3

Clause: File Termination.
The Secured Party may file a Termination Statement, and
certify the Termination Statement Time as the then current
time.

Clause: Release Escrow.
The Filing Office may, if the Termination Statement is filed,
return the Digital Asset Collateral to the Debtor.

Clause: Release Reminder Fee.
The Filing Office may, if the Termination Statement is filed,
return the Reminder Fee to the Secured Party.

Clause: Termination Period.
"Termination Period" is defined as 365 days after the
Termination Statement Time.

Clause: Terminate and Clear.
The Filing Office may, if the Termination Period has passed,
terminate this contract.

Fig 4 – U.C.C. Financing Statement (Reyes)

The Filer will usually be a bank employee or outside counsel for
the bank, the Debtor is the person taking out a loan, the Secured
Party is the bank. The Collateral is the real-world object the debtor
is putting up as security. It can also be cryptocurrency and similar,
i.e., Digital Asset Collateral.

The Reminder Fee is a fee that the bank can pay to the filing
office but is not required to pay. If the bank pays it, the filing
office may send a Notification to remind the bank to put in a Con-
tinuation Statement every 5 years – i.e., during the Continuation
Window. Else, the statement will lapse.

EXAMPLES

Tutorial 0.4.3.23-1-1 46 LE X O N 0.3

Note that while many features of this example merely effect
existing rules related to the UCC filing system, this feature of the
example represents a new proposal.

That there is no obligation described here is in keeping with
blockchain powers. A blockchain smart contract cannot coerce
anyone to do anything. It can only incentivize.6

If the debtor Defaults, all that is needed is that the bank says
so. This is the intended way the law works, not a weakness intro-
duced by the blockchainification. It is clearly an oracle-moment,7
and a weird one because the bank as Secured Party can simply say
that the money should now be theirs. This power, however, comes
from the underlying contract provisions that are part of the se-
cured loan documentation. The idea of ensuring that the Filing
Office retains a role in relation to Digital Asset Collateral – in that
without its action to Give Possession the collateral is not actually
going to go to the bank – is an attempt to address the unique is-
sues around custody and priority in the context of the Digital Asset
Collateral. If the Collateral is a real-world item and not a Digital
Asset Collateral, the normal rules related to self-help repossession
apply. By law though, the moment the bank says so, they collateral
is theirs. If the bank cheats, it's fraud.

A further feature of this smart contract is that it records
exactly who said what when: including that and when the bank
claimed that there was a default, which is the precondition to the
seizing of the assets. This trail of information matters.

6 See the Holy Grail paper at https://lexon.org/papers on how the concept of obligation
can be added to digital contracts on a blockchain, and Efficient Breach, pg. 123

7 Oracles, in blockchain-speak, are the gates through which facts from the outside
world are made known within the confines of the digital blockchain data world.

LEXON EXAMPLES

Tutorial 0.4.3.23-1-1 47 LE X O N 0.3

Proposing law to be written in Lexon is pretty rad. Carla
blew my mind with that. It’s testament to Lexon’s elegance, be-
cause it wasn’t an intended use case for Lexon.

The core statute of the original U.C.C. model law that would be
implemented by the above Lexon text, is:8

§ 9-502. CONTENTS OF FINANCING STATEMENT; REC-
ORD OF MORTGAGE AS FINANCING STATEMENT;
TIME OF FILING FINANCING STATEMENT.

(a) [Sufficiency of financing statement.]

Subject to subsection (b), a financing statement is sufficient only
if it:

(1) provides the name of the debtor;

(2) provides the name of the secured party or a representative of
the secured party; and

(3) indicates the collateral covered by the financing statement.

(b) [Real-property-related financing statements.]

Except as otherwise provided in Section 9-501(b), to be suffi-
cient, a financing statement that covers as-extracted collateral or
timber to be cut, or which is filed as a fixture filing and covers
goods that are or are to become fixtures, must satisfy subsection
(a) and also:

(1) indicate that it covers this type of collateral;

(2) indicate that it is to be filed [for record] in the real property
records;

(3) provide a description of the real property to which the collat-
eral is related [sufficient to give constructive notice of a

8 https://www.law.cornell.edu/ucc/9/9-502

EXAMPLES

Tutorial 0.4.3.23-1-1 48 LE X O N 0.3

mortgage under the law of this State if the description were con-
tained in a record of the mortgage of the real property]; and

(4) if the debtor does not have an interest of record in the real
property, provide the name of a record owner.

(c) [Record of mortgage as financing statement.]

A record of a mortgage is effective, from the date of recording,
as a financing statement filed as a fixture filing or as a financing
statement covering as-extracted collateral or timber to be cut
only if:

(1) the record indicates the goods or accounts that it covers;

(2) the goods are or are to become fixtures related to the real
property described in the record or the collateral is related to
the real property described in the record and is as-extracted col-
lateral or timber to be cut;

(3) the record satisfies the requirements for a financing state-
ment in this section, but

(A) the record need not indicate that it is to be filed in the real
property records; and

(B) the record sufficiently provides the name of a debtor who is
an individual if it provides the individual name of the debtor or
the surname and first personal name of the debtor, even if the
debtor is an individual to whom Section 9-503(a)(4) applies; and

(4) the record is [duly] recorded.

(d) [Filing before security agreement or attachment.]

A financing statement may be filed before a security agreement
is made or a security interest otherwise attaches.

Fig 5 – original financing statement model law

 49

CODE & TREES
Below, three ASTs are presented, each followed by the respective
source code that they were built9 from.

First, for a Lexon escrow contract.

Second, for the Solidity source that is generated as output
when the Lexon compiler processes the first.

Third, an independent approach at the same problem, pro-
grammed natively in Solidity without any Lexon involved. The
last example may serve as contrast to see how much less readably
structured Solidity looks when it is not generated from Lexon.

The point throughout is to demonstrate how the ASTs ex-
press roughly the same functionality but on different levels of ab-
straction. And how the Solidity ASTs are concerned with details
that make them lose the ‘meaning’ that is visible in the higher-
level Lexon AST.

9 AST graphs in this document were not created in an automated process but manu-
ally. The Lexon compiler can create AST graphs for any input though using the --tree
option.

CODE & TREES

Tutorial 0.4.3.23-1-1 50 LE X O N 0.3

LEXON CODE: WALK-THROUGH

Lexon AST

Fig 6 – Lexon AST for Escrow example

LEXON CODE & TREES

Tutorial 0.4.3.23-1-1 51 LE X O N 0.3

This AST is best understood by comparing it to its Lexon code
(pg. 52). The major parts (DEF[INITIONS], RECIT[ALS],
CLAUSES) are positioned left to right in this AST, while in the
source code they are appearing top to bottom, without explicit
labels. A blank line is separating them.

The name of the program – or smart contract – is the label
of the top-most node: Escrow.

The second AST level has only one node, the TERMS. The
keyword TERMS is optional in some cases and therefore also miss-
ing in the source code for this example.

The next layer of the AST consists of the three parts of the
TERMS: DEFINITIONS, RECITALS and CLAUSES. The DEFINITIONS
start at “Payer”, the PREPARATION at The Payer pays, and the
CLAUSES with the first CLAUSE. In the AST, the respective parts
are simply everything under the node with respective label (DEF.,
RECIT., CLAUSES). The reason that labels of that name do not exist
in the source is that they would be mostly redundant. The state-
ments in the DEFINITIONS section looks a certain way, everything
between them and the CLAUSES then are RECITALS. And each in-
dividual clause of course is marked by the keyword CLAUSE.

The source code is the best explanation for what the nodes
and edges of the AST mean. For example, the left-most vertical in
the AST, DEF. –person–Payer is the definition of the name Payer
as a person. It is derived from the parsing of the line “Payer” is
a person. After this, the meaning of the remaining nodes under
DEF. is obvious.

In the AST, left of the center there is the vertical RECIT.–
Payer–pay–Amount; with Escrow added under pay, too. This repre-
sents the source code The Payer pays an Amount into escrow.
The remaining nodes under RECIT. follow the same logic. These
lines are what is performed to set the contract up.

CODE & TREES

Tutorial 0.4.3.23-1-1 52 LE X O N 0.3

The AST verticals under Pay Out and Pay Back match
CLAUSE: Pay Out and CLAUSE: Pay Back and are best ex-
plained by the source code below. The Arbiter may, signifies that
only the Arbiter can invoke this clause. If anyone else tries, they
will only get an error. The Arbiter is going to authenticate them-
selves with the private key that belongs to the blockchain address
that is the basis for the identity of Arbiter. In Pay Out the Arbi-
ter first pays the Fee to themselves that the Payer has set in
the preparational phase of the contract performance. This Fee is
paid from the escrow, i.e., deducted from the initial payment the
Payer made into escrow during the Preparation. After the Fee
is taken care of, the remainder of the escrow is sent to the
Payee. Pay Back works the same with the one exception that the
money goes back to the Payer.

LEX Paid Escrow.

“Payer” is a person.
“Payee” is a person.
“Arbiter” is a person.
“Fee” is an amount.

The Payer pays an Amount into escrow, appoints the Payee,
appoints the Arbiter, and also fixes the Fee.

CLAUSE: Pay Out.
The Arbiter may pay from escrow the Fee to themselves,
and afterwards pay the remainder of the escrow to the Payee.

CLAUSE: Pay Back.
The Arbiter may pay from escrow the Fee to themselves,
and afterwards return the remainder of the escrow to the
Payer.

Fig 7 – Lexon Source Code for Escrow Example

LEXON CODE & TREES

Tutorial 0.4.3.23-1-1 53 LE X O N 0.3

GENERATED SOLIDITY:
WALK THROUGH
For completeness, this is the AST and source code of the Solidity
code that is generated by the Lexon compiler from the Lexon Es-
crow example given above.

Generated Solidity: AST

The Solidity source that Lexon produces, of course loses the vo-
cabulary and grammar of the Lexon code that it was created from.
But it keeps the document structure and names. One can easily iden-
tify the four main branches again, now called elements, construct,
Pay Out and Pay Back. But immediately below those, this AST
shifts to a more granular, data-leaning concern and loses the clar-
ity and all semblance to the Lexon AST.

As opposed to Lexon, there is no discernable subject-verb-
object relationship. The code, and the tree, deal instead in per-
mission details (public, payable, private) that are far from intui-
tive. It also takes care of requirements that arise from variable
scopes (most of the assigns) and it is heavy on micro granular calls
of functions and dereferencing of object elements (lookup). All
these are purely programming-specific concerns that are not re-
lated to natural language. They dominate the shape of this AST.

To be clear, on the way from the Lexon code to the resulting
smart contract running on the Ethereum mainnet, there are two
compilation steps: from Lexon to Solidity, and from Solidity to
op codes for the Ethereum virtual machine (EVM). Accordingly, an
AST is created on two occasions: first the Lexon one shown above
and then the Solidity one immediately below.

CODE & TREES

Tutorial 0.4.3.23-1-1 54 LE X O N 0.3

Fig 8 – Solidity AST for Escrow, Generated by Lexon

LEXON CODE & TREES

Tutorial 0.4.3.23-1-1 55 LE X O N 0.3

Generated Solidity: Source Code

pragma solidity ^0.5.0;

contract Escrow {
 address payable payer;
 address payable payee;
 address payable arbiter;
 uint fee;

 constructor(address payable _payee, address
payable _arbiter, uint _fee) public {
 payer=msg.sender;
 payee=_payee;
 arbiter=_arbiter;
 fee=_fee;
 }

 function PayOut() public {
 require(msg.sender == arbiter);
 arbiter.transfer(fee);
 payee.transfer(address(this).balance);
 }

 function PayBack() public {
 require(msg.sender == arbiter);
 arbiter.transfer(fee);
 payer.transfer(address(this).balance);
 }
 }

Fig 9 – Solidity Source Code for Escrow, Generated by Lexon

It is relative straight forward to match Solidity AST nodes and
Solidity source code. And also, to understand their respective
meaning from the Lexon source code shown before.

CODE & TREES

Tutorial 0.4.3.23-1-1 56 LE X O N 0.3

NATIVE SOLIDITY:
WALK THROUGH
For comparison, the following is an abbreviated version of a third
party example for an Solidity escrow contract.10 It was chosen be-
cause its maker could not have any knowledge of Lexon and it
illustrates well how different a ‘hand-made’ Solidity smart con-
tract is structured that tackles pretty much the same task, i.e., im-
plementing a simple escrow on the blockchain.

Expectably, as can be seen from the source code given below
(Fig 11), this smart contract source has a different roster of func-
tions: beyond the constructor, they are deposit, accept, cancel and
kill. These names, of course, appear as main nodes in the AST be-
low.

The function deposit is used to pay into the escrow. accept
is a combined entry point to give consent to the pay out and to
actually facilitate it, cancel is a similarly structured function to
allow for the unanimous termination of the agreement, paying the
money back. kill allows the controller of the escrow to terminate
the agreement.

This code is yet heavier than the Lexon-generated Solidity
(cf. above Fig 9, pg. 55) regarding the use of conditional branching
(if), de-referentiation (lookup) and function calls.

This source does of course not share the document structure
of the Lexon code example above. It has its own sequence and
logic, and this highlights the lower level of abstraction that is ap-
plied when writing Solidity code.

10 Pranav K. – https://medium.com/@pranav.89/smart-contracting-simplified-escrow-
in-solidity-ethereum-b19761e8fe74

LEXON CODE & TREES

Tutorial 0.4.3.23-1-1 57 LE X O N 0.3

Native Solidity: AST

Fig 10 – Solidity AST for Similar Escrow Example (alternate layout)

Native Solidity: Source Code

contract Escrow {

CODE & TREES

Tutorial 0.4.3.23-1-1 58 LE X O N 0.3

 uint balance;
 address public buyer;
 address public seller;
 address private escrow;
 bool buyerOk;
 bool sellerOk;

 constructor(address _buyer,
 address _seller) public {
 buyer = _buyer;
 seller = _seller;
 escrow = msg.sender;
 }

 function accept() public {
 if (msg.sender == buyer){
 buyerOk = true;
 } else if (msg.sender == seller){
 sellerOk = true;
 }
 if (buyerOk && sellerOk){
 // we are sending ourselves
 // (contract creator) a fee
 escrow.transfer(this.balance /100);
 if (seller.send(this.balance)) {
 balance = 0;
 } else {
 throw;
 }
 }
 }

 function deposit() public payable {
 if (msg.sender == buyer) {
 balance += msg.value;
 }
 }

 // if both buyer & seller would like
 // to cancel, money is returned to buyer
 function cancel() public {
 if (msg.sender == buyer){
 buyerOk = false;
 } else if (msg.sender == seller){
 sellerOk = false;
 }
 if (!buyerOk && !sellerOk){
 selfdestruct(buyer);
 }
 }

 function kill() public constant {
 if (msg.sender == escrow) {
 selfdestruct(buyer);
 }
 }
}

Fig 11 – Solidity Source Code for Similar Escrow Example

FIGURES
Fig 1 – Escrow Example (clickable) ... 36
Fig 2 – License Agreement (Idelberger) ... 39
Fig 3 – algorithm of the license agreement .. 40
Fig 4 – U.C.C. Financing Statement (Reyes) ... 45
Fig 5 – original financing statement model law ... 48
Fig 6 – Lexon AST for Escrow example ... 50
Fig 7 – Lexon Source Code for Escrow Example .. 52
Fig 8 – Solidity AST for Escrow, Generated by Lexon 54
Fig 9 – Solidity Source Code for Escrow, Generated by Lexon 55
Fig 10 – Solidity AST for Similar Escrow Example (alternate layout) 57
Fig 11 – Solidity Source Code for Similar Escrow Example 58

